60.1.77 problem 78

Internal problem ID [10091]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 78
Date solved : Sunday, March 30, 2025 at 03:15:20 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b&=0 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 88
ode:=diff(y(x),x)+a*sin(alpha*y(x)+beta*x)+b = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\beta x +2 \arctan \left (\frac {\tan \left (\frac {\sqrt {\left (-a^{2}+b^{2}\right ) \alpha ^{2}-2 \alpha b \beta +\beta ^{2}}\, \left (c_1 -x \right )}{2}\right ) \sqrt {\left (-a^{2}+b^{2}\right ) \alpha ^{2}-2 \alpha b \beta +\beta ^{2}}-a \alpha }{b \alpha -\beta }\right )}{\alpha } \]
Mathematica. Time used: 0.957 (sec). Leaf size: 396
ode=D[y[x],x]+ a*Sin[\[Alpha]*y[x]+\[Beta]*x] + b==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {b \int _1^x\left (\frac {a \alpha ^2 \cos (\beta K[1]+\alpha K[2])}{b \alpha +a \sin (\beta K[1]+\alpha K[2]) \alpha -\beta }-\frac {a \alpha ^3 \cos (\beta K[1]+\alpha K[2]) (b+a \sin (\beta K[1]+\alpha K[2]))}{(b \alpha +a \sin (\beta K[1]+\alpha K[2]) \alpha -\beta )^2}\right )dK[1] \alpha +a \sin (x \beta +\alpha K[2]) \int _1^x\left (\frac {a \alpha ^2 \cos (\beta K[1]+\alpha K[2])}{b \alpha +a \sin (\beta K[1]+\alpha K[2]) \alpha -\beta }-\frac {a \alpha ^3 \cos (\beta K[1]+\alpha K[2]) (b+a \sin (\beta K[1]+\alpha K[2]))}{(b \alpha +a \sin (\beta K[1]+\alpha K[2]) \alpha -\beta )^2}\right )dK[1] \alpha -\alpha -\beta \int _1^x\left (\frac {a \alpha ^2 \cos (\beta K[1]+\alpha K[2])}{b \alpha +a \sin (\beta K[1]+\alpha K[2]) \alpha -\beta }-\frac {a \alpha ^3 \cos (\beta K[1]+\alpha K[2]) (b+a \sin (\beta K[1]+\alpha K[2]))}{(b \alpha +a \sin (\beta K[1]+\alpha K[2]) \alpha -\beta )^2}\right )dK[1]}{b \alpha +a \sin (x \beta +\alpha K[2]) \alpha -\beta }dK[2]+\int _1^x\frac {\alpha (b+a \sin (\beta K[1]+\alpha y(x)))}{b \alpha +a \sin (\beta K[1]+\alpha y(x)) \alpha -\beta }dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
BETA = symbols("BETA") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*sin(Alpha*y(x) + BETA*x) + b + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out