Internal
problem
ID
[10086]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
73
Date
solved
:
Sunday, March 30, 2025 at 03:13:42 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x)-((a__3*x^3+a__2*x^2+a__1*x+a__0)/(a__3*y(x)^3+a__2*y(x)^2+a__1*y(x)+a__0))^(2/3) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] - ((a3*x^3+a2*x^2+a1*x+a0)/(a3*y[x]^3+a2*y[x]^2+a1*y[x]+a0))^(2/3)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a__0 = symbols("a__0") a__1 = symbols("a__1") a__2 = symbols("a__2") a__3 = symbols("a__3") y = Function("y") ode = Eq(-((a__0 + a__1*x + a__2*x**2 + a__3*x**3)/(a__0 + a__1*y(x) + a__2*y(x)**2 + a__3*y(x)**3))**(2/3) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out