Internal
problem
ID
[10082]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
69
Date
solved
:
Sunday, March 30, 2025 at 03:13:09 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]
ode:=diff(y(x),x)-((b__4*y(x)^4+b__3*y(x)^3+b__2*y(x)^2+b__1*y(x)+b__0)*(a__4*x^4+a__3*x^3+a__2*x^2+a__1*x+a__0))^(1/2) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] - Sqrt[(b4*y[x]^4+b3*y[x]^3+b2*y[x]^2+b1*y[x]+b0)*(a4*x^4+a3*x^3+a2*x^2+a1*x+a0)]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a__0 = symbols("a__0") a__1 = symbols("a__1") a__2 = symbols("a__2") a__3 = symbols("a__3") a__4 = symbols("a__4") b__0 = symbols("b__0") b__1 = symbols("b__1") b__2 = symbols("b__2") b__3 = symbols("b__3") b__4 = symbols("b__4") y = Function("y") ode = Eq(-sqrt((a__0 + a__1*x + a__2*x**2 + a__3*x**3 + a__4*x**4)*(b__0 + b__1*y(x) + b__2*y(x)**2 + b__3*y(x)**3 + b__4*y(x)**4)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out