Internal
problem
ID
[10029]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 02:54:12 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Riccati]
ode:=diff(y(x),x)+y(x)^2-2*x^2*y(x)+x^4-2*x-1 = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] + y[x]^2 - 2*x^2*y[x] + x^4 -2*x-1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4 - 2*x**2*y(x) - 2*x + y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)