59.1.814 problem 837

Internal problem ID [9986]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 837
Date solved : Sunday, March 30, 2025 at 02:51:00 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 21
ode:=x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)+4*x^4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sin \left (x^{2}\right )+c_2 \cos \left (x^{2}\right )}{x^{2}} \]
Mathematica. Time used: 0.054 (sec). Leaf size: 41
ode=x^2*D[y[x],{x,2}]+3*x*D[y[x],x]+4*x^4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {4 c_1 e^{-i x^2}-i c_2 e^{i x^2}}{4 x^2} \]
Sympy. Time used: 0.188 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**4*y(x) + x**2*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} J_{\frac {1}{2}}\left (x^{2}\right ) + C_{2} Y_{\frac {1}{2}}\left (x^{2}\right )}{x} \]