Internal
problem
ID
[9977]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
828
Date
solved
:
Sunday, March 30, 2025 at 02:50:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+(3*x^2+2*x)*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+(2*x+3*x^2)*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (3*x**2 + 2*x)*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)