59.1.735 problem 754

Internal problem ID [9907]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 754
Date solved : Sunday, March 30, 2025 at 02:49:18 PM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 55
ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+12*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \left (5 x^{3}-3 x \right ) \ln \left (x -1\right )}{24}+\frac {\left (-5 x^{3}+3 x \right ) c_2 \ln \left (x +1\right )}{24}-\frac {5 c_1 \,x^{3}}{3}+\frac {5 c_2 \,x^{2}}{12}+c_1 x -\frac {c_2}{9} \]
Mathematica. Time used: 0.024 (sec). Leaf size: 59
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+12*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} c_1 x \left (5 x^2-3\right )+c_2 \left (-\frac {5 x^2}{2}-\frac {1}{4} \left (5 x^2-3\right ) x (\log (1-x)-\log (x+1))+\frac {2}{3}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)) + 12*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False