Internal
problem
ID
[9879]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
724
Date
solved
:
Sunday, March 30, 2025 at 02:48:42 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+q*diff(y(x),x) = 2/x^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+q*D[y[x],x]==2*y[x]/x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") q = symbols("q") y = Function("y") ode = Eq(q*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2*y(x)/x**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False