Internal
problem
ID
[9871]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
716
Date
solved
:
Sunday, March 30, 2025 at 02:48:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(u(x),x),x)+2/x*diff(u(x),x)+a^2*u(x) = 0; dsolve(ode,u(x), singsol=all);
ode=D[u[x],{x,2}]+2/x*D[u[x],x]+a^2*u[x]==0; ic={}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") u = Function("u") ode = Eq(a**2*u(x) + Derivative(u(x), (x, 2)) + 2*Derivative(u(x), x)/x,0) ics = {} dsolve(ode,func=u(x),ics=ics)