Internal
problem
ID
[9863]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
708
Date
solved
:
Sunday, March 30, 2025 at 02:48:21 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*x^2*diff(diff(y(x),x),x)-(3*x+2)*diff(y(x),x)+(2*x-1)/x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x^2*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]+(2*x-1)/x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - (3*x + 2)*Derivative(y(x), x) + (2*x - 1)*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**3*Derivative(y(x), (x, 2)) + 2*x*y(x) - y(x))/(x*(3*x + 2)) cannot be solved by the factorable group method