Internal
problem
ID
[9837]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
682
Date
solved
:
Sunday, March 30, 2025 at 02:47:47 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(1+x)*diff(diff(y(x),x),x)+x^2*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(1+x)*D[y[x],{x,2}]+x^2*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x + 1)*Derivative(y(x), (x, 2)) + x**2*Derivative(y(x), x) - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2*y(x)/x**2 cannot be solved by the factorable group method