59.1.648 problem 665

Internal problem ID [9820]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 665
Date solved : Sunday, March 30, 2025 at 02:47:20 PM
CAS classification : [_Gegenbauer]

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 25
ode:=(x^2-1)*diff(diff(y(x),x),x)-6*x*diff(y(x),x)+12*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,x^{4}+c_1 \,x^{3}+6 c_2 \,x^{2}+c_1 x +c_2 \]
Mathematica. Time used: 0.366 (sec). Leaf size: 75
ode=(x^2-1)*D[y[x],{x,2}]-6*x*D[y[x],x]+12*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (x^2-1\right )^{3/2} \exp \left (\int _1^x\frac {K[1]+4}{K[1]^2-1}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\frac {K[1]+4}{K[1]^2-1}dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + 12*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False