Internal
problem
ID
[9807]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
652
Date
solved
:
Sunday, March 30, 2025 at 02:47:04 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*z*diff(diff(y(z),z),z)+2*(1-z)*diff(y(z),z)-y(z) = 0; dsolve(ode,y(z), singsol=all);
ode=4*z*D[y[z],{z,2}]+2*(1-z)*D[y[z],z]-y[z]==0; ic={}; DSolve[{ode,ic},y[z],z,IncludeSingularSolutions->True]
from sympy import * z = symbols("z") y = Function("y") ode = Eq(4*z*Derivative(y(z), (z, 2)) + (2 - 2*z)*Derivative(y(z), z) - y(z),0) ics = {} dsolve(ode,func=y(z),ics=ics)