Internal
problem
ID
[9792]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
636
Date
solved
:
Sunday, March 30, 2025 at 02:46:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)+(t^2+2*t+1)*diff(y(t),t)-(4+4*t)*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+(t^2+2*t+1)*D[y[t],t]-(4+4*t)*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((-4*t - 4)*y(t) + (t**2 + 2*t + 1)*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)