59.1.617 problem 633

Internal problem ID [9789]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 633
Date solved : Sunday, March 30, 2025 at 02:46:40 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 15
ode:=(2*t+1)*diff(diff(y(t),t),t)-4*(t+1)*diff(y(t),t)+4*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_2 \,{\mathrm e}^{2 t}+c_1 t +c_1 \]
Mathematica. Time used: 0.169 (sec). Leaf size: 88
ode=(2*t+1)*D[y[t],{t,2}]-4*(t+1)*D[y[t],t]+4*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \exp \left (\int _1^t\frac {2 K[1]}{2 K[1]+1}dK[1]-\frac {1}{2} \int _1^t\left (-2-\frac {2}{2 K[2]+1}\right )dK[2]\right ) \left (c_2 \int _1^t\exp \left (-2 \int _1^{K[3]}\frac {2 K[1]}{2 K[1]+1}dK[1]\right )dK[3]+c_1\right ) \]
Sympy. Time used: 1.140 (sec). Leaf size: 63
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((2*t + 1)*Derivative(y(t), (t, 2)) - (4*t + 4)*Derivative(y(t), t) + 4*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - t^{4} r{\left (3 \right )} + \frac {17 t^{5} r{\left (3 \right )}}{10} + C_{2} \left (\frac {52 t^{5}}{15} - \frac {11 t^{4}}{3} - 4 t^{2} + 1\right ) + C_{1} t \left (- 2 t^{4} + 2 t^{3} + 2 t + 1\right ) + O\left (t^{6}\right ) \]