Internal
problem
ID
[9785]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
629
Date
solved
:
Sunday, March 30, 2025 at 02:46:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)-4*t*diff(y(t),t)+(4*t^2-2)*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-4*t*D[y[t],t]+(4*t^2-2)*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*t*Derivative(y(t), t) + (4*t**2 - 2)*y(t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)