Internal
problem
ID
[9728]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
572
Date
solved
:
Sunday, March 30, 2025 at 02:45:19 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(5+9*x)*diff(y(x),x)+(3*x+4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(1+2*x)*D[y[x],{x,2}]+x*(5+9*x)*D[y[x],x]+(4+3*x)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(2*x + 1)*Derivative(y(x), (x, 2)) + x*(9*x + 5)*Derivative(y(x), x) + (3*x + 4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False