Internal
problem
ID
[9721]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
565
Date
solved
:
Sunday, March 30, 2025 at 02:45:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=16*x^2*diff(diff(y(x),x),x)+4*x*(2*x^2+x+6)*diff(y(x),x)+(18*x^2+5*x+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=16*x^2*D[y[x],{x,2}]+4*x*(6+x+2*x^2)*D[y[x],x]+(1+5*x+18*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(16*x**2*Derivative(y(x), (x, 2)) + 4*x*(2*x**2 + x + 6)*Derivative(y(x), x) + (18*x**2 + 5*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False