Internal
problem
ID
[9717]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
561
Date
solved
:
Sunday, March 30, 2025 at 02:45:02 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*(x^2+x+1)*diff(diff(y(x),x),x)+12*x^2*(1+x)*diff(y(x),x)+(3*x^2+3*x+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*(1+x+x^2)*D[y[x],{x,2}]+12*x^2*(1+x)*D[y[x],x]+(1+3*x+3*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(12*x**2*(x + 1)*Derivative(y(x), x) + 4*x**2*(x**2 + x + 1)*Derivative(y(x), (x, 2)) + (3*x**2 + 3*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False