59.1.522 problem 538

Internal problem ID [9694]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 538
Date solved : Sunday, March 30, 2025 at 02:44:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y&=0 \end{align*}

Maple. Time used: 0.106 (sec). Leaf size: 44
ode:=4*x^2*(-x^2+1)*diff(diff(y(x),x),x)+x*(-19*x^2+7)*diff(y(x),x)-(14*x^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \operatorname {LegendreP}\left (-\frac {3}{8}, \frac {5}{8}, \sqrt {-x^{2}+1}\right )+c_2 \operatorname {LegendreQ}\left (-\frac {3}{8}, \frac {5}{8}, \sqrt {-x^{2}+1}\right )}{x^{{3}/{8}} \sqrt {x^{2}-1}} \]
Mathematica. Time used: 0.291 (sec). Leaf size: 120
ode=4*x^2*(1-x^2)*D[y[x],{x,2}]+x*(7-19*x^2)*D[y[x],x]-(1+14*x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x-\frac {3 K[1]^2+1}{8 K[1]-8 K[1]^3}dK[1]-\frac {1}{2} \int _1^x\frac {7-19 K[2]^2}{4 K[2]-4 K[2]^3}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}-\frac {3 K[1]^2+1}{8 K[1]-8 K[1]^3}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*(1 - x**2)*Derivative(y(x), (x, 2)) + x*(7 - 19*x**2)*Derivative(y(x), x) - (14*x**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False