59.1.495 problem 511

Internal problem ID [9667]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 511
Date solved : Sunday, March 30, 2025 at 02:43:54 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (3+x \right ) y^{\prime \prime }+\left (1+2 x \right ) y^{\prime }-\left (2-x \right ) y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 33
ode:=(x+3)*diff(diff(y(x),x),x)+(2*x+1)*diff(y(x),x)-(2-x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (c_1 +c_2 x \left (x +6\right ) \left (x^{2}+9 x +27\right ) \left (x^{2}+3 x +9\right )\right ) \]
Mathematica. Time used: 0.336 (sec). Leaf size: 52
ode=(3+x)*D[y[x],{x,2}]+(1+2*x)*D[y[x],x]-(2-x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\left (c_2 (x+3)^6+6 c_1\right ) \exp \left (-\frac {1}{2} \int _1^x\left (2-\frac {5}{K[1]+3}\right )dK[1]\right )}{6 (x+3)^{5/2}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x - 2)*y(x) + (x + 3)*Derivative(y(x), (x, 2)) + (2*x + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False