Internal
problem
ID
[9654]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
498
Date
solved
:
Sunday, March 30, 2025 at 02:39:31 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(2*x^2+4*x+5)*diff(diff(y(x),x),x)-20*(1+x)*diff(y(x),x)+60*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x^2+4*x+5)*D[y[x],{x,2}]-20*(x+1)*D[y[x],x]+60*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-20*x - 20)*Derivative(y(x), x) + (2*x**2 + 4*x + 5)*Derivative(y(x), (x, 2)) + 60*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)