59.1.471 problem 486

Internal problem ID [9643]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 486
Date solved : Sunday, March 30, 2025 at 02:39:16 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+6 x y^{\prime }+6 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 24
ode:=(x^2+1)*diff(diff(y(x),x),x)+6*x*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \,x^{2}+c_1 x -c_2}{\left (x^{2}+1\right )^{2}} \]
Mathematica. Time used: 0.321 (sec). Leaf size: 79
ode=(1+x^2)*D[y[x],{x,2}]+6*x*D[y[x],x]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\exp \left (\int _1^x\frac {K[1]+2 i}{K[1]^2+1}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\frac {K[1]+2 i}{K[1]^2+1}dK[1]\right )dK[2]+c_1\right )}{\left (x^2+1\right )^{3/2}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False