Internal
problem
ID
[9637]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
480
Date
solved
:
Sunday, March 30, 2025 at 02:39:07 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(3*x-1)*diff(diff(y(x),x),x)-(3*x+2)*diff(y(x),x)-(6*x-8)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x-1)*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]-(6*x-8)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*x - 1)*Derivative(y(x), (x, 2)) - (3*x + 2)*Derivative(y(x), x) - (6*x - 8)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False