Internal
problem
ID
[9609]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
450
Date
solved
:
Sunday, March 30, 2025 at 02:38:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(-2*x+1)*diff(diff(y(x),x),x)+2*diff(y(x),x)+(2*x-3)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-2*x)*D[y[x],{x,2}]+2*D[y[x],x]+(2*x-3)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - 2*x)*Derivative(y(x), (x, 2)) + (2*x - 3)*y(x) + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False