59.1.423 problem 435

Internal problem ID [9595]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 435
Date solved : Sunday, March 30, 2025 at 02:38:17 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 2 y^{\prime \prime }+x y^{\prime }+3 y&=0 \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 35
ode:=2*diff(diff(y(x),x),x)+x*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\left (x^{2}-2\right ) \left (c_1 \sqrt {\pi }\, \operatorname {erfi}\left (\frac {x}{2}\right )-c_2 \right ) {\mathrm e}^{-\frac {x^{2}}{4}}+2 c_1 x \]
Mathematica. Time used: 0.202 (sec). Leaf size: 52
ode=2*D[y[x],{x,2}]+x*D[y[x],x]+3*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {x^2}{4}} \left (x^2-2\right ) \left (c_2 \int _1^x\frac {e^{\frac {K[1]^2}{4}}}{\left (K[1]^2-2\right )^2}dK[1]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + 3*y(x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False