Internal
problem
ID
[9579]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
419
Date
solved
:
Sunday, March 30, 2025 at 02:37:57 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-6*x+10)*diff(diff(y(x),x),x)-4*(x-3)*diff(y(x),x)+6*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-6*x+10)*D[y[x],{x,2}]-4*(x-3)*D[y[x],x]+6*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((12 - 4*x)*Derivative(y(x), x) + (x**2 - 6*x + 10)*Derivative(y(x), (x, 2)) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False