Internal
problem
ID
[9563]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
402
Date
solved
:
Sunday, March 30, 2025 at 02:37:36 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*diff(diff(y(x),x),x)+(-8*x^2+4*x)*diff(y(x),x)+(4*x^2-4*x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]+(-8*x^2+4*x)*D[y[x],x]+(4*x^2-4*x-1)*y[x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + (-8*x**2 + 4*x)*Derivative(y(x), x) + (4*x**2 - 4*x - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False