Internal
problem
ID
[9534]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
369
Date
solved
:
Sunday, March 30, 2025 at 02:36:59 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+2/x*diff(y(x),x)-2/(1+x)^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2/x*D[y[x],x]-2/(1+x)^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - 2*y(x)/(x + 1)**2 + 2*Derivative(y(x), x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
False