7.2.11 problem 13

Internal problem ID [29]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.3. Problems at page 27
Problem number : 13
Date solved : Saturday, March 29, 2025 at 04:26:26 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{{1}/{3}} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \end{align*}

Maple. Time used: 0.090 (sec). Leaf size: 18
ode:=diff(y(x),x) = y(x)^(1/3); 
ic:=y(0) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {\left (2 x +3\right ) \sqrt {6 x +9}}{9} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 23
ode=D[y[x],x]==y[x]^(1/3); 
ic={y[0]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {(2 x+3)^{3/2}}{3 \sqrt {3}} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**(1/3) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : Initial conditions produced too many solutions for constants