59.1.322 problem 329

Internal problem ID [9494]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 329
Date solved : Sunday, March 30, 2025 at 02:36:10 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+2 y^{\prime }-x y&=0 \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 17
ode:=x*diff(diff(y(x),x),x)+2*diff(y(x),x)-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sinh \left (x \right )+c_2 \cosh \left (x \right )}{x} \]
Mathematica. Time used: 0.025 (sec). Leaf size: 28
ode=x*D[y[x],{x,2}]+2*D[y[x],x]-x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 c_1 e^{-x}+c_2 e^x}{2 x} \]
Sympy. Time used: 0.214 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + x*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} J_{\frac {1}{2}}\left (i x\right ) + C_{2} Y_{\frac {1}{2}}\left (i x\right )}{\sqrt {x}} \]