Internal
problem
ID
[9473]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
304
Date
solved
:
Sunday, March 30, 2025 at 02:35:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(1+x)*diff(diff(y(x),x),x)-(2*x+1)*(-y(x)+x*diff(y(x),x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(1+x)*D[y[x],{x,2}]-(1+2*x)*(x*D[y[x],x]+y[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x + 1)*Derivative(y(x), (x, 2)) - (2*x + 1)*(x*Derivative(y(x), x) - y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False