Internal
problem
ID
[9381]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
212
Date
solved
:
Sunday, March 30, 2025 at 02:33:38 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^2*diff(diff(y(t),t),t)+(t^2-3*t)*diff(y(t),t)+3*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+(t^2-3*t)*D[y[t],t]+3*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + (t**2 - 3*t)*Derivative(y(t), t) + 3*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)