Internal
problem
ID
[9367]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
197
Date
solved
:
Sunday, March 30, 2025 at 02:33:20 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=(1+t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*t*Derivative(y(t), t) + (t**2 + 1)*Derivative(y(t), (t, 2)) + 2*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)