Internal
problem
ID
[9332]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
162
Date
solved
:
Sunday, March 30, 2025 at 02:32:34 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(3*x+4)*diff(diff(y(x),x),x)-x*(4-3*x)*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(4+3*x)*D[y[x],{x,2}]-x*(4-3*x)*D[y[x],x]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(3*x + 4)*Derivative(y(x), (x, 2)) - x*(4 - 3*x)*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False