59.1.145 problem 147

Internal problem ID [9317]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 147
Date solved : Sunday, March 30, 2025 at 02:32:13 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y&=0 \end{align*}

Maple. Time used: 0.215 (sec). Leaf size: 66
ode:=4*x^2*(x^2+4)*diff(diff(y(x),x),x)+3*x*(3*x^2+8)*diff(y(x),x)+(-9*x^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x^{2} \operatorname {hypergeom}\left (\left [1, 1, \frac {13}{8}\right ], \left [2, 2\right ], -\frac {x^{2}}{4}\right )-\frac {32 \mcoloneq \gamma }{5}+\frac {64 \ln \left (2\right )}{5}-\frac {64 \ln \left (x \right )}{5}-\frac {32 \Psi \left (\frac {5}{8}\right )}{5}\right ) c_2 \left (x^{2}+4\right )^{{5}/{8}} 2^{{3}/{4}}+c_1 \left (x^{2}+4\right )^{{5}/{8}}-\frac {1024 c_2}{25}}{x^{{1}/{4}}} \]
Mathematica. Time used: 0.273 (sec). Leaf size: 118
ode=4*x^2*(4+x^2)*D[y[x],{x,2}]+3*x*(8+3*x^2)*D[y[x],x]+(1-9*x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {17 K[1]^2+16}{8 K[1]^3+32 K[1]}dK[1]-\frac {1}{2} \int _1^x\frac {9 K[2]^2+24}{4 K[2]^3+16 K[2]}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {17 K[1]^2+16}{8 K[1]^3+32 K[1]}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*(x**2 + 4)*Derivative(y(x), (x, 2)) + 3*x*(3*x**2 + 8)*Derivative(y(x), x) + (1 - 9*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False