Internal
problem
ID
[9317]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
147
Date
solved
:
Sunday, March 30, 2025 at 02:32:13 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*(x^2+4)*diff(diff(y(x),x),x)+3*x*(3*x^2+8)*diff(y(x),x)+(-9*x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*(4+x^2)*D[y[x],{x,2}]+3*x*(8+3*x^2)*D[y[x],x]+(1-9*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*(x**2 + 4)*Derivative(y(x), (x, 2)) + 3*x*(3*x**2 + 8)*Derivative(y(x), x) + (1 - 9*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False