Internal
problem
ID
[9315]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
145
Date
solved
:
Sunday, March 30, 2025 at 02:32:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=2*x^2*(x^2+2)*diff(diff(y(x),x),x)+7*x^3*diff(y(x),x)+(3*x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x^2*(2+x^2)*D[y[x],{x,2}]+7*x^3*D[y[x],x]+(1+3*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(7*x**3*Derivative(y(x), x) + 2*x**2*(x**2 + 2)*Derivative(y(x), (x, 2)) + (3*x**2 + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False