59.1.131 problem 133

Internal problem ID [9303]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 133
Date solved : Sunday, March 30, 2025 at 02:31:55 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y&=0 \end{align*}

Maple. Time used: 0.078 (sec). Leaf size: 93
ode:=36*x^2*(-2*x+1)*diff(diff(y(x),x),x)+24*x*(1-9*x)*diff(y(x),x)+(1-70*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{{1}/{6}} \left (2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (-1+2 x \right )^{{1}/{3}}}{-2+\left (-1+2 x \right )^{{1}/{3}}}\right ) c_2 -2 \ln \left (1+\left (-1+2 x \right )^{{1}/{3}}\right ) c_2 +\ln \left (1-\left (-1+2 x \right )^{{1}/{3}}+\left (-1+2 x \right )^{{2}/{3}}\right ) c_2 +6 c_2 \left (-1+2 x \right )^{{1}/{3}}+3 c_1 \right )}{3 \left (-1+2 x \right )^{{4}/{3}}} \]
Mathematica. Time used: 0.296 (sec). Leaf size: 112
ode=36*x^2*(1-2*x)*D[y[x],{x,2}]+24*x*(1-9*x)*D[y[x],x]+(1-70*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {3-4 K[1]}{6 K[1]-12 K[1]^2}dK[1]-\frac {1}{2} \int _1^x\frac {2-18 K[2]}{3 K[2]-6 K[2]^2}dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {3-4 K[1]}{6 K[1]-12 K[1]^2}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(36*x**2*(1 - 2*x)*Derivative(y(x), (x, 2)) + 24*x*(1 - 9*x)*Derivative(y(x), x) + (1 - 70*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False