Internal
problem
ID
[9300]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
130
Date
solved
:
Sunday, March 30, 2025 at 02:31:51 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*(2*x+1)*diff(diff(y(x),x),x)+x*(3*x^2+14*x+5)*diff(y(x),x)+(12*x^2+18*x+4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*(1+2*x)*D[y[x],{x,2}]+x*(5+14*x+3*x^2)*D[y[x],x]+(4+18*x+12*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(2*x + 1)*Derivative(y(x), (x, 2)) + x*(3*x**2 + 14*x + 5)*Derivative(y(x), x) + (12*x**2 + 18*x + 4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False