59.1.123 problem 125

Internal problem ID [9295]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 125
Date solved : Sunday, March 30, 2025 at 02:31:42 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y&=0 \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 42
ode:=x^2*(-x^2+2)*diff(diff(y(x),x),x)-2*x*(2*x^2+1)*diff(y(x),x)+(-2*x^2+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x \left (\sqrt {2}\, c_2 \sqrt {x^{2}-2}+2 \arctan \left (\frac {\sqrt {2}}{\sqrt {x^{2}-2}}\right ) c_2 +c_1 \right )}{\left (x^{2}-2\right )^{{3}/{2}}} \]
Mathematica. Time used: 0.252 (sec). Leaf size: 97
ode=x^2*(2-x^2)*D[y[x],{x,2}]-2*x*(1+2*x^2)*D[y[x],x]+(2-2*x^2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {1}{2 K[1]-K[1]^3}dK[1]-\frac {1}{2} \int _1^x\left (\frac {5 K[2]}{K[2]^2-2}-\frac {1}{K[2]}\right )dK[2]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[3]}\frac {1}{2 K[1]-K[1]^3}dK[1]\right )dK[3]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(2 - x**2)*Derivative(y(x), (x, 2)) - 2*x*(2*x**2 + 1)*Derivative(y(x), x) + (2 - 2*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False