Internal
problem
ID
[9290]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
120
Date
solved
:
Sunday, March 30, 2025 at 02:31:36 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*x^2*(x^2+3*x+1)*diff(diff(y(x),x),x)-4*x*(-3*x^2-3*x+1)*diff(y(x),x)+3*(x^2-x+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*(1+3*x+x^2)*D[y[x],{x,2}]-4*x*(1-3*x-3*x^2)*D[y[x],x]+3*(1-x+x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*(x**2 + 3*x + 1)*Derivative(y(x), (x, 2)) - 4*x*(-3*x**2 - 3*x + 1)*Derivative(y(x), x) + (3*x**2 - 3*x + 3)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False