Internal
problem
ID
[9287]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
117
Date
solved
:
Sunday, March 30, 2025 at 02:31:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=6*x^2*(2*x^2+1)*diff(diff(y(x),x),x)+x*(50*x^2+1)*diff(y(x),x)+(30*x^2+1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=6*x^2*(1+2*x^2)*D[y[x],{x,2}]+x*(1+50*x^2)*D[y[x],x]+(1+30*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x**2*(2*x**2 + 1)*Derivative(y(x), (x, 2)) + x*(50*x**2 + 1)*Derivative(y(x), x) + (30*x**2 + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False