7.1.3 problem 3

Internal problem ID [3]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.2. Problems at page 17
Problem number : 3
Date solved : Saturday, March 29, 2025 at 04:25:25 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sqrt {x} \end{align*}

With initial conditions

\begin{align*} y \left (4\right )&=0 \end{align*}

Maple. Time used: 0.034 (sec). Leaf size: 11
ode:=diff(y(x),x) = x^(1/2); 
ic:=y(4) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {2 x^{{3}/{2}}}{3}-\frac {16}{3} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 16
ode=D[y[x],x]==Sqrt[x]; 
ic={y[4]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2}{3} \left (x^{3/2}-8\right ) \]
Sympy. Time used: 0.237 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(x) + Derivative(y(x), x),0) 
ics = {y(4): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {2 x^{\frac {3}{2}}}{3} - \frac {16}{3} \]