Internal
problem
ID
[9233]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
63
Date
solved
:
Sunday, March 30, 2025 at 02:26:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-8*x+14)*diff(diff(y(x),x),x)-8*(-4+x)*diff(y(x),x)+20*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-8*x+14)*D[y[x],{x,2}]+8*(x-4)*D[y[x],x]+20*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((32 - 8*x)*Derivative(y(x), x) + (x**2 - 8*x + 14)*Derivative(y(x), (x, 2)) + 20*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False