59.1.33 problem 34

Internal problem ID [9205]
Book : Collection of Kovacic problems
Section : section 1
Problem number : 34
Date solved : Sunday, March 30, 2025 at 02:25:33 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 16
ode:=(2*x+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)-(2*x+3)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x}+c_2 \,{\mathrm e}^{x} x \]
Mathematica. Time used: 0.358 (sec). Leaf size: 69
ode=(2*x+1)*D[y[x],{x,2}]-2*D[y[x],x]-(2*x+3)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {2 x+1} \exp \left (\int _1^x\left (\frac {1}{-2 K[1]-1}-1\right )dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\left (\frac {1}{-2 K[1]-1}-1\right )dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x + 1)*Derivative(y(x), (x, 2)) - (2*x + 3)*y(x) - 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False