Internal
problem
ID
[9172]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
49
Date
solved
:
Sunday, March 30, 2025 at 02:24:48 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)+y(t), diff(y(t),t) = -x(t)+y(t)]; dsolve(ode);
ode={D[x[t],t]==3*x[t]+y[t],D[y[t],t]==-x[t]+y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-3*x(t) - y(t) + Derivative(x(t), t),0),Eq(x(t) - y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)