58.2.49 problem 49

Internal problem ID [9172]
Book : Second order enumerated odes
Section : section 2
Problem number : 49
Date solved : Sunday, March 30, 2025 at 02:24:48 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-x \left (t \right )+y \left (t \right ) \end{align*}

Maple. Time used: 0.116 (sec). Leaf size: 31
ode:=[diff(x(t),t) = 3*x(t)+y(t), diff(y(t),t) = -x(t)+y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{2 t} \left (c_2 t +c_1 \right ) \\ y \left (t \right ) &= -{\mathrm e}^{2 t} \left (c_2 t +c_1 -c_2 \right ) \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 42
ode={D[x[t],t]==3*x[t]+y[t],D[y[t],t]==-x[t]+y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to e^{2 t} (c_1 (t+1)+c_2 t) \\ y(t)\to e^{2 t} (c_2-(c_1+c_2) t) \\ \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 37
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-3*x(t) - y(t) + Derivative(x(t), t),0),Eq(x(t) - y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{2} t e^{2 t} + \left (C_{1} + C_{2}\right ) e^{2 t}, \ y{\left (t \right )} = - C_{1} e^{2 t} - C_{2} t e^{2 t}\right ] \]