58.2.45 problem 45

Internal problem ID [9168]
Book : Second order enumerated odes
Section : section 2
Problem number : 45
Date solved : Sunday, March 30, 2025 at 02:24:41 PM
CAS classification : [_Bessel]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-5)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {BesselJ}\left (\sqrt {5}, x\right )+c_2 \operatorname {BesselY}\left (\sqrt {5}, x\right ) \]
Mathematica. Time used: 0.079 (sec). Leaf size: 26
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-5)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {BesselJ}\left (\sqrt {5},x\right )+c_2 \operatorname {BesselY}\left (\sqrt {5},x\right ) \]
Sympy. Time used: 0.199 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 5)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\sqrt {5}}\left (x\right ) + C_{2} Y_{\sqrt {5}}\left (x\right ) \]