58.2.22 problem 23

Internal problem ID [9145]
Book : Second order enumerated odes
Section : section 2
Problem number : 23
Date solved : Sunday, March 30, 2025 at 02:23:28 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y&=0 \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+tan(x)*diff(y(x),x)+cos(x)^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\sin \left (x \right )\right )+c_2 \cos \left (\sin \left (x \right )\right ) \]
Mathematica. Time used: 1.833 (sec). Leaf size: 37
ode=D[y[x],{x,2}]+Tan[x]*D[y[x],x]+Cos[x]^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cosh \left (\sqrt {-\sin ^2(x)}\right )+i c_2 \sinh \left (\sqrt {-\sin ^2(x)}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x)*cos(x)**2 + tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False