Internal
problem
ID
[9142]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
20
Date
solved
:
Sunday, March 30, 2025 at 02:23:20 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+3*y(x) = 2*x^3-x^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+3*y[x]==2*x^3-x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**3 + x**2*Derivative(y(x), (x, 2)) + x**2 - 3*x*Derivative(y(x), x) + 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)