Internal
problem
ID
[9140]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
18
Date
solved
:
Sunday, March 30, 2025 at 02:23:15 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=(-x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)-c^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(1-x^2)*D[y[x],{x,2}]-x*D[y[x],x]-c^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") c = symbols("c") y = Function("y") ode = Eq(-c**2*y(x) - x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False